Шаблоны LeoTheme для Joomla.
GavickPro Joomla шаблоны

Новости iXBT.com

iXBT.com (https://www.ixbt.com) — специализированный российский информационно-аналитический сервер, освещающий вопросы аппаратного обеспечения персональных компьютеров, коммуникаций и серверов, 3D-графики и звука, цифрового фото и видео, Hi-Fi аппаратуры и проекторов, мобильной связи и периферии, игровых приложений и многого другого.
iXBT.com: новости
  1. АвтоВАЗ доработал процесс сборки Lada Largus, выпускаемого сейчас в Ижевске. Как оказалось, ранее на линии проверки герметичности двери могли касаться опоры оборудования, что приводило к повреждению лакокрасочного покрытия левых дверей. Сейчас эту проблему устранили при помощи… нескольких кусков вспененного полиэтилена.

    Изображение: Lada

    «Наклейку нескольких кусков вспененного полиэтилена назвали "предупреждением деградации левых дверей за камерой пролива". Так что теперь шансы купить Lada Largus со сколом краски исключены», — пишет Quto.ru.

  2. 6-ядерный AMD Ryzen 5 9600X станет самым дешевым представителем серии настольных процессоров Ryzen 9000. Сейчас инженерный образец этого CPU засветился сразу в двух бенчмарках — CineBench R23 и CPU-Z, что позволяет составить представление о его производительности.

    Базовая частота CPU 3,9 ГГц, максимальная — 5,4 ГГц. Объем кэш-памяти составляет 38 МБ, TDP — 65 Вт.

    В однопоточном тесте CineBench R23 процессор заработал 2160 баллов, в многопоточном — 16205 баллов. Это на 10% и 5% больше, чем у Ryzen 7600X. С профилем PBO производительность CPU повыше — 2244 и 17037 баллов, что на 14% и 10% больше, чем у Ryzen 7600X.

    Изображение: HXL

    Результаты в CPU-Z скромнее, хотя и тут Ryzen 5 9600X заметно быстрее предшественника в однопоточном тесте (результат на уровне Core i9-12900K). Нужно отметить, что CPU тестировался с базовым профилем, да и в целом процессоры AMD нового поколения на архитектуре Zen5 не демонстрируют существенного увеличения производительности относительно предшественников в этом тесте.  

  3. Область изучения экзопланет выросла экспоненциально за последние 20 лет. Благодаря таким миссиям, как Kepler, TESS (Transiting Exoplanet Survey Satellite) и другим специализированным обсерваториям, астрономы подтвердили существование 5690 экзопланет в 4243 звёздных системах.

    С таким количеством планет и систем, доступных для изучения, учёные были вынуждены пересмотреть многие ранее существовавшие представления о формировании и эволюции планет и о том, какие условия необходимы для жизни. В последнем случае учёные переосмыслили концепцию околосолнечной обитаемой зоны (CHZ).

    По определению, CHZ — это область вокруг звезды, где вращающаяся вокруг неё планета будет поддерживать жидкую воду на своей поверхности. По мере эволюции звёзд их сияние и тепло будут увеличиваться или уменьшаться в зависимости от их массы, изменяя границы CHZ.

    Группа астрономов из Итальянского национального института астрофизики (INAF) рассмотрела, как эволюция звёзд влияет на их ультрафиолетовое излучение. Поскольку ультрафиолетовый свет, по-видимому, важен для возникновения жизни в том виде, в котором мы её знаем, они рассмотрели, как эволюция ультрафиолетовой обитаемой зоны звезды (UHZ) и её CHZ могут быть связаны.

    Источник: DALL-E

    Исследовательскую группу возглавил Риккардо Спинелли, исследователь INAF из Астрономической обсерватории Палермо. К нему присоединились астрономы из Национального института ядерной физики (INFN), Университета Инсубрии и Астрономической обсерватории Брера.

    UHZ — это область вокруг звезды, где планета получает достаточно ультрафиолетового излучения, чтобы вызвать образование предшественников РНК, но не настолько, чтобы разрушить биомолекулы. «Эта зона в первую очередь зависит от ультрафиолетовой светимости звезды, которая со временем уменьшается. В результате этого ультрафиолетовая обитаемая зона находится дальше от звезды на ранних стадиях её эволюции и постепенно приближается к ней с течением времени», — Спинелли.

    Как астрономам известно уже некоторое время, CHZ также подвержены эволюции из-за изменений в светимости и тепловом выходе звезды, которые увеличиваются или уменьшаются со временем в зависимости от массы светила. Рассмотрение взаимодействия этих двух обитаемых зон может пролить свет на то, какие экзопланеты с наибольшей вероятностью являются «потенциально пригодными для жизни» в известном виде.

    Как объяснил Спинелли, «Мы до сих пор точно не знаем, как зародилась жизнь на Земле, но у нас есть некоторые подсказки, указывающие на то, что ультрафиолетовое излучение могло сыграть решающую роль. Экспериментальные исследования, такие как проведённое Полом Риммером и Джоном Сазерлендом в 2018 году, дают существенную информацию. В своем эксперименте Риммер и Сазерленд подвергли ионы цианистого водорода и сульфита водорода в воде воздействию УФ-излучения и обнаружили, что это эффективно запускает образование предшественников РНК. Без ультрафиолетового света та же смесь привела к инертному соединению, которое не могло образовать строительные блоки жизни. Кроме того, РНК демонстрирует устойчивость к повреждениям от ультрафиолетового излучения, что указывает на то, что она, вероятно, образовалась в среде, богатой ультрафиолетом. Оно было одним из самых распространённых источников химической энергии на ранней Земле, что позволяет предположить, что оно могло сыграть решающую роль в возникновении жизни».

    Для своих целей Спинелли и его коллеги стремились определить, будут ли (и как долго) перекрываться зоны CHZ и UVZ, способствуя тем самым возникновению жизни. С этой целью команда проанализировала данные с телескопа NASA UVOT (Swift Ultraviolet/Optical Telescope), чтобы измерить текущую ультрафиолетовую светимость звёзд с экзопланетами, которые находятся в «классической» обитаемой зоне (Habitable Zone, HZ). Затем они изучили данные космического телескопа NASA GALEX (Galaxy Evolution Explorer), который наблюдает за галактиками на расстоянии до 10 миллиардов лет в ультрафиолетовом диапазоне. Из GALEX они включили то, как движущиеся группы молодых звёзд развиваются с точки зрения их ближней ультрафиолетовой светимости.

    «Чтобы оценить эволюцию ультрафиолетовой обитаемой зоны во времени, мы использовали результаты, полученные Ричи-Йоуэллом и соавторами в работе 2023 года. В этой работе авторы вывели среднюю эволюцию ультрафиолетовой светимости для каждого типа звёзд. Мы реконструировали эволюцию ультрафиолетовой яркости звёзд, содержащих планеты в классической обитаемой зоне, путём объединения средней эволюции, полученной Ричи-Йоуэллом, и измерений, проведённых с помощью телескопа Swift», — сказал Спинелли.

    Иллюстрация системы Trappist-1. Источник: NASA / JPL-Caltech

    Из этого они определили, что существует пересечение между эволюцией CHZ и UHZ. Эти результаты были особенно заметны для звёзд M-типа (красных карликов), где было обнаружено множество каменистых планет, вращающихся внутри их CHZ. Предыдущие исследования, включающие статью 2023 года Спинелли и многих из тех же коллег, предполагали, что M-карлики в настоящее время не получают ближнего ультрафиолетового излучения для поддержки пребиотической химии, необходимой для возникновения жизни. Однако их выводы в последней статье противоречат их предыдущим выводам.

    Спинелли сказал: «Мы утверждаем, что при изучении эволюции светимости в ближней ультрафиолетовой области (NUV luminosity) у М-карликов большинство этих холодных звёзд действительно способны испускать достаточное количество фотонов NUV в течение первых 1–2 миллиардов лет своей жизни, чтобы инициировать формирование важных строительных блоков жизни. Результаты показывают, что условия для зарождения жизни (в соответствии с пребиотическим путём, который мы рассматриваем) могут быть или могли быть обычными в галактике. Пересечение между классической зоной обитаемости и ультрафиолетовой зоной обитаемости может существовать (или могло существовать) вокруг всех звёзд нашей выборки на разных стадиях их жизни, за исключением самых холодных М-карликов [температура менее 2800 К, в частности, Trappist-1 и звезда Teegarden]».

    Хотя результаты могут немного разочаровать тех, кто надеется найти жизнь на некоторых из семи каменистых планет TRAPPIST-1, но сулит хорошие перспективы для других звёзд M-типа, в зонах их обитания которых есть каменистые планеты. Сюда входят ближайшая к Солнечной системе экзопланета (Проксима b), Ross 128 b, Luyten b, Gliese 667 Cc и Gliese 180 b, все из которых находятся в пределах 40 световых лет от Земли.

    Эти результаты могут иметь важное значение для исследований экзопланет и астробиологии, которые в последние годы перешли от стадии открытия к стадии описания. Исследования в этом направлении получат большую пользу от телескопов следующего поколения, таких как космический телескоп «Нэнси Грейс Роман», а также наземных обсерваторий, которые позволят проводить исследования экзопланет методом прямой визуализации.

  4. У крупного столичного дилера появился новейший Hyundai Santa Fe — кроссовер пятого поколения — в топовой комплектации. За автомобиль просят около 7,2 млн рублей, при этом на машину распространяется дилерская гарантия.

    Изображение: Hyundai

    Под капотом установлен 2,5-литровый турбированный бензиновый двигатель мощностью 285 л.с. Он сочетается с роботизированной коробкой передач, привод — полный. В комплектации подогрев всех сидений, автопарковщик, система кругового обзора, адаптивный круиз-контроль, цифровая приборная панель и проекционный экран, парковочные датчики и спереди, и сзади, климат-контроль, датчики света и дождя, различные системы помощи водителю.

    Изображение: Hyundai
    Изображение: Hyundai

    Столь хорошо оснащенный Hyundai Santa Fe оказался примерно на полмиллиона рублей дороже не так хорошо укомплектованных машин.

  5. Учёными было обнаружено блуждающее звёздное тело, которое может быть «неудавшейся звездой» или коричневым карликом. Однако его скорость является уникальной — 1,2 миллиона миль в час (1,9 миллиона км/ч), что в 1500 раз быстрее скорости звука. К счастью, это звёздное тело движется к центру Млечного Пути, а не к Земле.

    CWISE J1249+3621, как его назвали учёные, находится на расстоянии около 400 световых лет от Земли. Масса этого звёздного тела составляет всего около 8% массы Солнца или в 80 раз больше массы Юпитера. Это ставит его на границу между звездой и коричневым карликом. Коричневые карлики часто называют «неудавшимися звёздами», так как они не могут достичь массы, необходимой для создания давления и температуры в ядрах, которые запускают синтез водорода в гелий.

    CWISE J1249+3621 был первоначально обнаружен гражданскими учёными, работающими над проектом Backyard Worlds: Planet 9. Они использовали данные широкоугольного инфракрасного обзорного телескопа NASA WISE для обнаружения тусклых объектов относительно близко к Солнцу. После этого, группа астрономов продолжила наблюдение, используя телескоп Keck I на Гавайях.

    Иллюстрация тусклого коричневого карлика и его инфракрасного излучения. Источник:  NASA, ESA, CSA, LEAH HUSTAK

    «Мы обнаружили объект с очень малой массой, прямо на границе масс звезды и коричневого карлика, который имеет экстремальную скорость, двигаясь достаточно быстро, чтобы он мог фактически не быть связанным с галактикой Млечный Путь. Он присоединяется к коллекции "гиперскоростных" звёзд, которые были обнаружены за последние несколько десятилетий, большинство из которых находятся в тысячах световых лет от Солнца, тогда как этот источник находится "всего" в 400 световых годах», — рассказал руководитель исследовательской группы Адам Бургассер из Калифорнийского университета в Сан-Диего.

    Наблюдения команды включали анализ атмосферы CWISE J1249+3621, который указывает на необычный химический состав. Команда стремилась использовать собранную ими информацию о движении и составе CWISE J1249+3621, чтобы предположить его возможное происхождение.

    «Объект мог быть выброшен из центра Млечного Пути нашей сверхмассивной чёрной дырой, Стрелец А*, это процесс, который обычно используется для объяснения происхождения других гиперскоростных звёзд. Примечательно, что наша находка движется в центр, а не от него, но она может быть на обратном пути после того, как была выброшена ранее», — сказал Бургассер. Он также добавил, что возможно, что коричневый карлик «убегает» от «космического вампира» или был выброшен из шарового скопления посредством динамических взаимодействий с чёрными дырами в центре скопления.

    «Это открытие в основном открывает новый путь к изучению коричневых карликов, которые находятся в отдалённых регионах Млечного Пути, включая его центр, его гало и различные шаровые скопления и спутники. Все эти системы слишком далеки, чтобы изучать коричневые карлики подробно напрямую, но если они попадут к нам, это будет намного проще», — сказал Бургассер.

    Коричневые карлики формируются так же, как и звёзды — из гигантских облаков газа и пыли, называемых молекулярными облаками, которые образуют чрезмерно плотные скопления, которые разрушаются под действием собственной гравитации. Однако, в отличие от обычной звезды, таких как Солнце, коричневые карлики не могут собрать достаточно материала из остатков облака, которое их породило, чтобы достичь массы, необходимой для создания давления и температуры в их ядрах, которые запускают синтез водорода в гелий. Это процесс, который определяет звезду «главной последовательности». Отсюда и прозвище «неудавшаяся звезда».

    Иллюстрация коричневого карлика в сравнении с размерами некоторых других космических объектов. Источник: NASA / CC

    Масса коричневых карликов варьируется от примерно 4 масс Юпитера до примерно 80 масс газового гиганта (для сравнения, Солнце в 1000 раз массивнее Юпитера). Масса CWISE J1249+3621 необычная, поскольку она помещает её прямо на гипотетическую границу между звездой и коричневым карликом.

    «Низкая масса имеет значение, поскольку это самая маломассивная и высокоскоростная "звезда", обнаруженная на сегодняшний день. Первоначальные гиперскоростные звёзды, обнаруженные около 20 лет назад, были массивными звездами O [примерно в 50 раз массивнее Солнца] и звёздами B [до 16 раз массивнее Солнца], что является вероятной ошибкой отбора, поскольку эти звёзды редки и должны быть обнаружены на больших расстояниях. Наше открытие указывает на то, что любой процесс (или процессы), заставляющие эти звёзды "убегать", должен происходить как при больших, так и при малых массах», — сказал Бургассер.

    Исследователь объяснил, что команда с нетерпением ждёт возможности попытаться выяснить, что заставило это звёздное тело пролететь через Млечный Путь.«Орбита, безусловно, является самым удивительным аспектом этого объекта, — он движется в центр Млечного Пути и из него и почти идеально в плоскости. Большинство высокоскоростных звёзд, которые мы видим, находятся на гораздо более хаотичных или наклонных орбитах. Я думаю, что это ключ к его истинному происхождению», — сказал Бургассер.

    Коричневые карлики-беглецы, если это CWISE J1249+3621, кажутся редкими, но это может быть из-за их холодной и тусклой природы, что затрудняет обнаружение. Это означает, что популяция коричневых карликов-беглецов может быть намного больше, чем показывают текущие показатели.

    «Эти типы звёзд чрезвычайно редки: из миллиардов исследованных звёзд было обнаружено всего несколько десятков, и, как уже отмечалось, это первая маломассивная звезда. И этот объект в частности трудно увидеть, потому что это очень холодная и тусклая звезда, почти в 10 000 раз слабее Солнца и излучающая большую часть своего света в инфракрасном диапазоне. Трудно сказать, насколько распространены эти объекты, поскольку пока найдено только одно, но поскольку оно так близко, мы предполагаем, что их может быть гораздо больше. Это предположение отчасти основано на том факте, что большинство звёзд во Млечном Пути имеют малую массу, а примерно одна из пяти — коричневые карлики, и что эти объекты легче всего приходят в движение, поскольку они имеют столь малую массу», — сказал Бургассер.

    Команда намерена продолжить более детальное исследование атмосферы CWISE J1249+3621, чтобы узнать, раскрывают ли её химические даннве что-либо о её происхождении. Они также планируют попытаться обнаружить больше таких маломассивных звёздных беглецов, в охоте за которыми гражданские учёные будут играть важную роль.

    «Мы хотим найти больше таких объектов, наши гражданские учёные уже выявили ещё несколько высокоскоростных кандидатов для дальнейшего изучения. Гражданские учёные абсолютно необходимы для этого исследования,  — они были теми, кто определил этот источник как интересную цель, достойную изучения. Без них у нас всё ещё были бы сотни тысяч слабых маленьких точек, которые нужно было бы сортировать», — заключил Бургассер.